Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 475
1.
SAR QSAR Environ Res ; 35(4): 325-342, 2024 Apr.
Article En | MEDLINE | ID: mdl-38690773

This study aims to comprehensively characterize 576 inhibitors targeting Spleen Tyrosine Kinase (SYK), a non-receptor tyrosine kinase primarily found in haematopoietic cells, with significant relevance to B-cell receptor function. The objective is to gain insights into the structural requirements essential for potent activity, with implications for various therapeutic applications. Through chemoinformatic analyses, we focus on exploring the chemical space, scaffold diversity, and structure-activity relationships (SAR). By leveraging ECFP4 and MACCS fingerprints, we elucidate the relationship between chemical compounds and visualize the network using RDKit and NetworkX platforms. Additionally, compound clustering and visualization of the associated chemical space aid in understanding overall diversity. The outcomes include identifying consensus diversity patterns to assess global chemical space diversity. Furthermore, incorporating pairwise activity differences enhances the activity landscape visualization, revealing heterogeneous SAR patterns. The dataset analysed in this work has three activity cliff generators, CHEMBL3415598, CHEMBL4780257, and CHEMBL3265037, compounds with high affinity to SYK are very similar to compounds analogues with reasonable potency differences. Overall, this study provides a critical analysis of SYK inhibitors, uncovering potential scaffolds and chemical moieties crucial for their activity, thereby advancing the understanding of their therapeutic potential.


Protein Kinase Inhibitors , Syk Kinase , Syk Kinase/antagonists & inhibitors , Syk Kinase/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship , Quantitative Structure-Activity Relationship
2.
Brain Res ; 1834: 148907, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38570153

BACKGROUND: Traumatic brain injury (TBI), as a major public health problem, is characterized by high incidence rate, disability rate, and mortality rate. Neuroinflammation plays a crucial role in the pathogenesis of TBI. Triggering receptor expressed on myeloid cells-1 (TREM-1) is recognized as an amplifier of the inflammation in diseases of the central nervous system (CNS). However, the function of TREM-1 remains unclear post-TBI. This study aimed to investigate the function of TREM-1 in neuroinflammation induced by TBI. METHODS: Brain water content (BWC), modified neurological severity score (mNSS), and Morris Water Maze (MWM) were measured to evaluate the effect of TREM-1 inhibition on nervous system function and outcome after TBI. TREM-1 expression in vivo was evaluated by Western blotting. The cellular localization of TREM-1 in the damaged region was observed via immunofluorescence staining. We also conducted Western blotting to examine expression of SYK, p-SYK and other downstream proteins. RESULTS: We found that inhibition of TREM-1 reduced brain edema, decreased mNSS and improved neurobehavioral outcomes after TBI. It was further determined that TREM-1 was expressed on microglia and modulated subtype transition of microglia. Inhibition of TREM-1 alleviated neuroinflammation, which was associated with SYK/p38MAPK signaling pathway. CONCLUSIONS: These findings suggest that TREM-1 can be a potential clinical therapeutic target for alleviating neuroinflammation after TBI.


Brain Injuries, Traumatic , Microglia , Neuroinflammatory Diseases , Syk Kinase , Triggering Receptor Expressed on Myeloid Cells-1 , p38 Mitogen-Activated Protein Kinases , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/drug therapy , Animals , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/antagonists & inhibitors , Microglia/metabolism , Microglia/drug effects , Syk Kinase/metabolism , Syk Kinase/antagonists & inhibitors , Male , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , p38 Mitogen-Activated Protein Kinases/metabolism , Mice , Signal Transduction/drug effects , Brain Edema/metabolism , Brain Edema/drug therapy , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Mice, Inbred C57BL
3.
Eur J Med Chem ; 270: 116375, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38604095

Spleen tyrosine kinase (Syk) is a key signal transduction mediator of the B cell receptor (BCR) signaling pathway. Abnormal BCR signaling plays a key role in initiation and development of B-cell-derived hematological malignancies, therefore, Syk represents a potential target for inhibiting the BCR signaling resulting in a therapeutic effect in these cancers. Herein, we describe a novel series of SYK inhibitors with 4-(3'-pyrazolyl)-2-amino-pyrimidine scaffold. Extensive study of structure-activity relationships led to the identification of 1 (NMS-0963), a highly potent Syk inhibitor (IC50 = 3 nM) endowed with high selectivity within a panel of tested kinases and high antiproliferative activity in SYK-dependent BaF3-TEL/SYK cells and in other BCR-dependent hematological tumor cell lines. Additionally, 1 effectively inhibited Syk phosphorylation and downstream signaling mediators of the BCR in treated cells. In in vivo pharmacokinetics studies, 1, displayed good pharmacokinetics properties, with linear exposure with dose and excellent oral bioavailability. These findings suggest that 1 is a promising new Syk inhibitor for treating BCR-dependent hematological cancers.


Hematologic Neoplasms , Protein-Tyrosine Kinases , Pyrimidines , Humans , Syk Kinase/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Signal Transduction , Phosphorylation , Hematologic Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use
4.
In Vivo ; 38(3): 1042-1048, 2024.
Article En | MEDLINE | ID: mdl-38688646

BACKGROUND/AIM: Oral epithelial cells serve as the primary defense against microbial exposure in the oral cavity, including the fungus Candida albicans. Dectin-1 is crucial for recognition of ß-glucan in fungi. However, expression and function of Dectin-1 in oral epithelial cells remain unclear. MATERIALS AND METHODS: We assessed Dectin-1 expression in Ca9-22 (gingiva), HSC-2 (mouth), HSC-3 (tongue), and HSC-4 (tongue) human oral epithelial cells using flow cytometry and real-time polymerase chain reaction. Cell treated with ß-glucan-rich zymosan were evaluated using real-time polymerase chain reaction. Phosphorylation of spleen-associated tyrosine kinase (SYK) was analyzed by western blotting. RESULTS: Dectin-1 was expressed in all four cell types, with high expression in Ca9-22 and HSC-2. In Ca9-22 cells, exposure to ß-glucan-rich zymosan did not alter the mRNA expression of chemokines nor of interleukin (IL)6, IL8, IL1ß, IL17A, and IL17F. Zymosan induced the expression of antimicrobial peptides ß-defensin-1 and LL-37, but not S100 calcium-binding protein A8 (S100A8) and S100A9. Furthermore, the expression of cylindromatosis (CYLD), a negative regulator of nuclear factor kappa B (NF-κB) signaling, was induced. In HSC-2 cells, zymosan induced the expression of IL17A. The expression of tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a negative regulator of NF-κB signaling, was also induced. Expression of other cytokines and antimicrobial peptides remained unchanged. Zymosan induced phosphorylation of SYK in Ca9-22 cells, as well as NF-κB. CONCLUSION: Oral epithelial cells express Dectin-1 and recognize ß-glucan, which activates SYK and induces the expression of antimicrobial peptides and negative regulators of NF-κB, potentially maintaining oral homeostasis.


Epithelial Cells , Lectins, C-Type , NF-kappa B , Signal Transduction , Syk Kinase , Humans , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , NF-kappa B/metabolism , Syk Kinase/metabolism , Syk Kinase/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cell Line , Zymosan/pharmacology , Cytokines/metabolism , Cytokines/genetics , Phosphorylation , Mouth Mucosa/metabolism , Mouth Mucosa/immunology , Pore Forming Cytotoxic Proteins/metabolism , Pore Forming Cytotoxic Proteins/genetics , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism
5.
Drug Resist Updat ; 74: 101085, 2024 May.
Article En | MEDLINE | ID: mdl-38636338

Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase (PARP) inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase acknowledged for its regulatory roles in immune cell function, cell adhesion, and vascular development. This study presents evidence indicating that Syk expression in high-grade serous ovarian cancer and triple-negative breast cancers promotes DNA double-strand break resection, homologous recombination (HR), and subsequent therapeutic resistance. Our investigations reveal that Syk is activated by ATM following DNA damage and is recruited to DNA double-strand breaks by NBS1. Once localized to the break site, Syk phosphorylates CtIP, a pivotal mediator of resection and HR, at Thr-847 to promote repair activity, particularly in Syk-expressing cancer cells. Inhibition of Syk or its genetic deletion impedes CtIP Thr-847 phosphorylation and overcomes the resistant phenotype. Collectively, our findings suggest a model wherein Syk fosters therapeutic resistance by promoting DNA resection and HR through a hitherto uncharacterized ATM-Syk-CtIP pathway. Moreover, Syk emerges as a promising tumor-specific target to sensitize Syk-expressing tumors to PARP inhibitors, radiation and other DNA-targeted therapies.


DNA Breaks, Double-Stranded , Drug Resistance, Neoplasm , Homologous Recombination , Syk Kinase , Syk Kinase/metabolism , Syk Kinase/genetics , Syk Kinase/antagonists & inhibitors , Humans , DNA Breaks, Double-Stranded/drug effects , Female , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Phosphorylation , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , DNA Repair/drug effects , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Animals , Cell Line, Tumor , DNA Damage/drug effects
7.
Toxicol Appl Pharmacol ; 485: 116911, 2024 Apr.
Article En | MEDLINE | ID: mdl-38527694

The highly selective Spleen Tyrosine Kinase (SYK) inhibitors entospletinib and lanraplenib disrupt kinase activity and inhibit immune cell functions. They are developed for treatment of B-cell malignancies and autoimmunity diseases. The impact of P-gp/ABCB1 and BCRP/ABCG2 efflux transporters, OATP1a/1b uptake transporters and CYP3A drug-metabolizing enzymes on the oral pharmacokinetics of these drugs was assessed using mouse models. Entospletinib and lanraplenib were orally administered simultaneously at moderate dosages (10 mg/kg each) to female mice to assess the possibility of examining two structurally and mechanistically similar drugs at the same time, while reducing the number of experimental animals and sample-processing workload. The plasma pharmacokinetics of both drugs were not substantially restricted by Abcb1 or Abcg2. The brain-to-plasma ratios of entospletinib in Abcb1a/b-/-, Abcg2-/- and Abcb1a/b;Abcg2-/- mice were 1.7-, 1.8- and 2.9-fold higher, respectively, compared to those in wild-type mice. For lanraplenib these brain-to-plasma ratios were 3.0-, 1.3- and 10.4-fold higher, respectively. This transporter-mediated restriction of brain penetration for both drugs could be almost fully inhibited by coadministration of the dual ABCB1/ABCG2 inhibitor elacridar, without signs of acute toxicity. Oatp1a/b and human CYP3A4 did not seem to affect the pharmacokinetics of entospletinib and lanraplenib, but mouse Cyp3a may limit lanraplenib plasma exposure. Unexpectedly, entospletinib and lanraplenib increased each other's plasma exposure by 2.6- to 2.9-fold, indicating a significant drug-drug interaction. This interaction was, however, unlikely to be mediated through any of the studied transporters or CYP3A. The obtained insights may perhaps help to further improve the safety and efficacy of entospletinib and lanraplenib.


ATP Binding Cassette Transporter, Subfamily G, Member 2 , Brain , Indazoles , Morpholines , Protein Kinase Inhibitors , Pyrazines , Animals , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Female , Mice , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Brain/metabolism , Brain/drug effects , Syk Kinase/antagonists & inhibitors , Syk Kinase/metabolism , Mice, Knockout , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Mice, Inbred C57BL , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Administration, Oral
8.
PLoS One ; 19(2): e0293548, 2024.
Article En | MEDLINE | ID: mdl-38359047

RNA sequencing and genetic data support spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) as putative targets to be modulated for Alzheimer's disease (AD) therapy. FCER1G is a component of Fc receptor complexes that contain an immunoreceptor tyrosine-based activation motif (ITAM). SYK interacts with the Fc receptor by binding to doubly phosphorylated ITAM (p-ITAM) via its two tandem SH2 domains (SYK-tSH2). Interaction of the FCER1G p-ITAM with SYK-tSH2 enables SYK activation via phosphorylation. Since SYK activation is reported to exacerbate AD pathology, we hypothesized that disruption of this interaction would be beneficial for AD patients. Herein, we developed biochemical and biophysical assays to enable the discovery of small molecules that perturb the interaction between the FCER1G p-ITAM and SYK-tSH2. We identified two distinct chemotypes using a high-throughput screen (HTS) and orthogonally assessed their binding. Both chemotypes covalently modify SYK-tSH2 and inhibit its interaction with FCER1G p-ITAM, however, these compounds lack selectivity and this limits their utility as chemical tools.


Protein-Tyrosine Kinases , src Homology Domains , Humans , Protein-Tyrosine Kinases/metabolism , Immunoreceptor Tyrosine-Based Activation Motif , Intracellular Signaling Peptides and Proteins/metabolism , Syk Kinase/metabolism , Phosphorylation , Receptors, Fc/metabolism , Enzyme Precursors/metabolism
9.
Int Immunopharmacol ; 128: 111537, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38232538

Respiratory failure caused by severe acute lung injury (ALI) is the main cause of mortality in patients with COVID-19.This study aimed to investigate the effects and underlying biological mechanism of Apolipoprotein C3 (ApoC3) in ALI. To establish an in vivo model, C57BL/6 mice were exposed by lipopolysaccharide (LPS). For the in vitro model, murine bone marrow-derived macrophages (BMDMs) or RAW264.7 cells were stimulated with LPS + adenosine triphosphate (ATP). Serum levels of ApoC3 were found to be upregulated in patients with COVID-19 or pneumonia-induced ALI. Inhibition of ApoC3 reduced lung injury in an ALI model, while overexpression of ApoC3 promoted lung injury. ApoC3 induced mitochondrial damage-mediated pyroptosis in ALI through the activation of the NOD-like receptorprotein 3 (NLRP3) inflammasome. ApoC3 recombinant protein significantly increased SCIMP expression in the lung tissue of mice models with ALI. ApoC3 also facilitated the interaction between the SLP adapter and CSK-interacting membrane protein (SCIMP) protein and Spleen tyrosine kinase (SYK) protein in the ALI model. Moreover, ApoC3 accelerated calcium-dependent reactive oxygen species (ROS) production in the ALI model. The effects of ApoC3 on pyroptosis were mitigated by the use of a pyroptosis inhibitor or an ROS inhibitor in the ALI model. Furthermore, ApoC3 activated the expression of SYK, which in turn induced NLRP3 inflammasome-regulated pyroptosis in the ALI model. METTL3 was found to mediate the m6A mRNA expression of ApoC3. Overall, our study highlights the crucial role of ApoC3 in promoting macrophage pyroptosis in ALI through calcium-dependent ROS production and NLRP3 inflammasome activation via the SCIMP-SYK pathway, providing a potential therapeutic strategy for ALI and other inflammatory diseases.


Acute Lung Injury , COVID-19 , Methyltransferases , Animals , Humans , Mice , Acute Lung Injury/drug therapy , Adaptor Proteins, Signal Transducing/metabolism , Calcium/metabolism , Inflammasomes/metabolism , Lipopolysaccharides/pharmacology , Macrophages , Membrane Proteins/metabolism , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Reactive Oxygen Species/metabolism , Syk Kinase/metabolism , Apolipoproteins C/metabolism
10.
Curr Drug Targets ; 24(17): 1298-1316, 2023.
Article En | MEDLINE | ID: mdl-38083893

Rheumatoid arthritis is an untreatable autoimmune disorder. The disease is accompanied by joint impairment and anomalies, which negatively affect the patient's quality of life and contribute to a decline in manpower. To diagnose and treat rheumatoid arthritis, it is crucial to understand the abnormal signaling pathways that contribute to the disease. This understanding will help develop new rheumatoid arthritis-related intervention targets. Over the last few decades, researchers have given more attention to rheumatoid arthritis. The current review seeks to provide a detailed summary of rheumatoid arthritis, highlighting the basic description of the disease, past occurrences, the study of epidemiology, risk elements, and the process of disease progression, as well as the key scientific development of the disease condition and multiple signaling pathways and enumerating the most current advancements in discovering new rheumatoid arthritis signaling pathways and rheumatoid arthritis inhibitors. This review emphasizes the anti-rheumatoid effects of these inhibitors [for the Wnt/ß-catenin, Phosphoinositide 3-Kinases (PI3K/AKT), Spleen Tyrosine Kinase (SYK), and Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) signaling pathways], illustrating their mechanism of action through a literature search, current therapies, and novel drugs under pre-clinical and clinical trials.


Arthritis, Rheumatoid , Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , beta Catenin/metabolism , Quality of Life , Signal Transduction , Arthritis, Rheumatoid/metabolism , Syk Kinase/metabolism , Syk Kinase/therapeutic use
11.
Front Immunol ; 14: 1279155, 2023.
Article En | MEDLINE | ID: mdl-38111569

Autoimmune arthritis - such as rheumatoid arthritis - affect a significant proportion of the population, which can cause everyday joint pain, decreased mobility and reduced quality of life. Despite having more and more therapeutic options available, there are still a lot of patients who cannot reach remission or low disease activity by current therapies. This causes an urgent need for the development of new treatment options. The Syk tyrosine kinase plays an essential role in B cell receptor, Fc receptor and integrin signaling. It has been shown that the hematopoietic cell-specific deletion of Syk resulted in a complete protection against autoantibody-induced experimental arthritis. This prompted us to test the effect of entospletinib, a second generation, Syk-selective inhibitor, which has a tolerable safety profile according to hematological clinical trials, in experimental autoimmune arthritis. We found that entospletinib dose-dependently decreased the macroscopic signs of joint inflammation, while it did not affect the health status of the animals. In line with these findings, local neutrophil accumulation and cytokine levels were reduced compared to the vehicle-treated group, while macrophage accumulation and synovial fibroblast numbers were not significantly altered. Meanwhile, entospletinib dose-dependently decreased the cell responses of immune complex- or integrin ligand-activated neutrophils. Overall, we found that selective Syk inhibition by entospletinib reduced the activity of autoantibody-induced experimental arthritis, which seems to be based mainly on the effect of the inhibitor on neutrophil functions. Our data raise the possibility that entospletinib could be a good drug candidate in the treatment of human autoimmune arthritis.


Arthritis, Experimental , Autoimmune Diseases , Animals , Humans , Syk Kinase/metabolism , Quality of Life , Autoimmune Diseases/drug therapy , Autoimmune Diseases/metabolism , Autoantibodies/therapeutic use , Integrins/therapeutic use
12.
Platelets ; 34(1): 2281941, 2023 Dec.
Article En | MEDLINE | ID: mdl-38010137

Kappa-carrageenan (KCG), which is used to induce thrombosis in laboratory animals for antithrombotic drug screening, can trigger platelet aggregation. However, the cell-surface receptor and related signaling pathways remain unclear. In this study, we investigated the molecular basis of KCG-induced platelet activation using light-transmittance aggregometry, flow cytometry, western blotting, and surface plasmon resonance assays using platelets from platelet receptor-deficient mice and recombinant proteins. KCG-induced tail thrombosis was also evaluated in mice lacking the platelet receptor. We found that KCG induces platelet aggregation with α-granule secretion, activated integrin αIIbß3, and phosphatidylserine exposure. As this aggregation was significantly inhibited by the Src family kinase inhibitor and spleen tyrosine kinase (Syk) inhibitor, a tyrosine kinase-dependent pathway is required. Platelets exposed to KCG exhibited intracellular tyrosine phosphorylation of Syk, linker activated T cells, and phospholipase C gamma 2. KCG-induced platelet aggregation was abolished in platelets from C-type lectin-like receptor-2 (CLEC-2)-deficient mice, but not in platelets pre-treated with glycoprotein VI-blocking antibody, JAQ1. Surface plasmon resonance assays showed a direct association between murine/human recombinant CLEC-2 and KCG. KCG-induced thrombosis and thrombocytopenia were significantly inhibited in CLEC-2-deficient mice. Our findings show that KCG induces platelet activation via CLEC-2.


Thrombosis is a serious medical condition that occurs when blood clots form in the blood vessels and can lead to heart attacks or strokes. Animal models are important for evaluating the effectiveness of drugs in thrombosis treatment. Kappa-carrageenan (KCG) is a food thickener and a substance used to induce clot formation in laboratory animals. In this study, we investigated the molecular basis of KCG-induced platelet activation, which is an important step in thrombosis development. We found that KCG activates platelets via a receptor called C-type lectin-like receptor 2 (CLEC-2), leading to a prothrombotic state in mice. We also showed that KCG-induced tail thrombosis (CTT) is significantly inhibited in CLEC-2 deficient mice. Our findings suggest that CLEC-2-mediated platelet activation plays a key role in the pathogenesis of thrombosis and CLEC-2 May participate in innate immunity as a receptor for sulfate-polysaccharide.Abbreviation; CLEC-2: C-type lectin-like receptor 2; CRP: collagen-related peptide; CTT: KCGN-induced tail thrombosis; DIC: disseminated intravascular coagulation; EDTA: ethylenediaminetetraacetic acid; GPVI: glycoprotein VI; HRP: horseradish peroxidase; KCG: Κ-Carrageenan; LAT: linker activated T cells; LDS: lithium dodecyl sulfate; LTA: light-transmittance aggregometry; MFI: mean fluorescence intensity; PFA: paraformaldehyde; PLCγ2: phospholipase C gamma 2; PS: phosphatidylserine; Syk: spleen tyrosine kinase; Co-HP: Cobalt-hematoporphyrin.


Membrane Glycoproteins , Thrombosis , Animals , Humans , Mice , Carrageenan/adverse effects , Carrageenan/metabolism , Membrane Glycoproteins/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Tail/metabolism , Platelet Aggregation , Blood Platelets/metabolism , Platelet Activation , Syk Kinase/metabolism , Phosphorylation , Carrier Proteins/metabolism , Thrombosis/metabolism
13.
PLoS One ; 18(11): e0282763, 2023.
Article En | MEDLINE | ID: mdl-37922232

Hidradenitis Suppurativa is a chronic inflammatory disease of which the pathogenesis is incompletely understood. Dermal fibroblasts have been previously identified as a major source of inflammatory cytokines, however information pertaining to the characteristics of subpopulations of fibroblasts in HS remains unexplored. Using in silico-deconvolution of whole-tissue RNAseq, Nanostring gene expression panels and confirmatory immunohistochemistry we identified fibroblast subpopulations in HS tissue and their relationship to disease severity and lesion morphology. Gene signatures of SFRP2+ fibroblast subsets were increased in lesional tissue, with gene signatures of SFRP1+ fibroblast subsets decreased. SFRP2+ and CXCL12+ fibroblast numbers, measured by IHC, were increased in HS tissue, with greater numbers associated with epithelialized tunnels and Hurley Stage 3 disease. Pro-inflammatory CXCL12+ fibroblasts were also increased, with reductions in SFRP1+ fibroblasts compared to healthy controls. Evidence of Epithelial Mesenchymal Transition was seen via altered gene expression of SNAI2 and altered protein expression of ZEB1, TWIST1, Snail/Slug, E-Cadherin and N-Cadherin in HS lesional tissue. The greatest dysregulation of EMT associated proteins was seen in biopsies containing epithelialized tunnels. The use of the oral Spleen tyrosine Kinase inhibitor Fostamatinib significantly reduced expression of genes associated with chronic inflammation, fibroblast proliferation and migration suggesting a potential role for targeting fibroblast activity in HS.


Hidradenitis Suppurativa , Humans , Hidradenitis Suppurativa/drug therapy , Hidradenitis Suppurativa/genetics , Hidradenitis Suppurativa/metabolism , Epithelial-Mesenchymal Transition/physiology , Syk Kinase/metabolism , Inflammation/metabolism , Fibroblasts/metabolism
14.
Eur J Immunol ; 53(12): e2250360, 2023 12.
Article En | MEDLINE | ID: mdl-37736882

In the present study, we found that methiothepin (a nonselective 5-hydroxytryptamine [5-HT] receptor antagonist) inhibited antigen-induced degranulation in rat basophilic leukemia cells and mouse bone marrow-derived mast cells. Although antigen stimulation induces release of histamine and serotonin (5-HT) by exocytosis and mast cells express several types of 5-HT receptor, the detailed role of these receptors remains unclear. Here, pretreatment of cells with methiothepin attenuated increased intracellular Ca2+ concentration, phosphorylated critical upstream signaling components (Src family tyrosine kinases, Syk, and PLCγ1), and suppressed TNF-α secretion via inhibition of Akt (a Ser/Thr kinase activated by PI3K)and ERK phosphorylation. Furthermore, it inhibited PMA/ionomycin-induced degranulation; this finding suggested that methiothepin affected downstream signaling. IκB kinase ß phosphorylates synaptosomal associated protein 23, which regulates the fusion events of the secretory granule/plasma membrane after mast cell activation, resulting in degranulation. We showed that methiothepin blocked PMA/ionomycin-induced phosphorylation of synaptosomal associated protein 23 by inhibiting its interaction with IκB kinase ß. Together with the results of selective 5-HT antagonists, it is suggested that methiothepin inhibits mast cell degranulation by downregulating upstream signaling pathways and exocytotic fusion machinery through mainly 5-HT1A receptor. Our findings provide that 5-HT antagonists may be used to relieve allergic reactions.


Leukemia , Mast Cells , Rats , Mice , Animals , Methiothepin/metabolism , Methiothepin/pharmacology , I-kappa B Kinase/metabolism , Serotonin/pharmacology , Serotonin/metabolism , Bone Marrow/metabolism , Ionomycin/metabolism , Ionomycin/pharmacology , Serotonin Antagonists/metabolism , Serotonin Antagonists/pharmacology , Cell Degranulation , Syk Kinase/metabolism , Receptors, IgE
15.
Inflammopharmacology ; 31(5): 2303-2310, 2023 Oct.
Article En | MEDLINE | ID: mdl-37405587

Alzheimer's disease (AD) is a progressive type of neurodegenerative disease characterized by successive loss of the conventional structure and functions of neurons. In addition to dead neurons type detected within AD brain tissues, there are a predominantly varying number of deteriorating neurons (DTNs). As the number of deteriorating neurons increases, they exaggerate the release of inflammatory factors and oxidative stress that trigger the cascade of neuroinflammation. Triggering receptor expressed on myeloid cells 1 (TREM-1) which is a transmembrane immune receptor type regularly expressed by phagocytic cells, may act as a stimulating factor for neuroinflammation. Once TREM-1 is activated, it directly activates spleen tyrosine kinase (SYK) downstream signaling cascades, which can be considered an initiating phase for AD pathology and AD progression. Sequentially, SYK activates the pro-inflammatory microglia M1 phenotype which executes several inflammatory actions, leading to neurotoxicity. These released neurotoxins promote neuronal cell death, synaptic dysfunctions, and memory impairments. Thus, the current review outlines the direct etiological and pathologic features of Alzheimer's disease linked with deteriorating neurons, TREM-1, and SYK.


Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Neurodegenerative Diseases/metabolism , Neuroinflammatory Diseases , Neurons/pathology , Microglia/metabolism , Syk Kinase/metabolism
16.
Immun Inflamm Dis ; 11(7): e934, 2023 07.
Article En | MEDLINE | ID: mdl-37506139

BACKGROUND: The high prevalence of chronic inflammatory diseases or autoimmune reactions is a major source of concern and affects the quality of life of patients. Chronic inflammatory or autoimmune diseases are associated with many diseases in humans, including asthma, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease and cancer. Splenic tyrosine kinase (SYK) is a non-receptor tyrosine kinase that plays an important role in immune receptor signalling in immune and inflammatory responses. METHODS: This is a review article in which we searched for keywords "splenic tyrosine kinase", "inflammation" and "autoimmune diseases" in published literature such as Pubmed and Web of Science to collect relevant information and then conducted a study focusing on the latest findings on the involvement of SYK in chronic inflammatory or autoimmune diseases. RESULTS: This paper reviews the regulation of Fcγ, NF-κB, B cell and T cell-related signalling pathways by SYK, which contributes to disease progression in chronic inflammatory and autoimmune diseases such as airway fibrosis, inflammatory skin disease and inflammatory bowel disease. CONCLUSION: This paper shows that SYK plays an important role in chronic inflammatory and autoimmune diseases. syk targets hematological, autoimmune and other inflammatory diseases and therefore, inhibition of SYK expression or blocking its related pathways may provide new ideas for clinical prevention and treatment of inflammatory or autoimmune diseases.


Autoimmune Diseases , Inflammatory Bowel Diseases , Humans , Syk Kinase/metabolism , Quality of Life , Signal Transduction , Inflammation/drug therapy
17.
Int J Mol Sci ; 24(11)2023 May 23.
Article En | MEDLINE | ID: mdl-37298079

The two members of the UBASH3/STS/TULA protein family have been shown to critically regulate key biological functions, including immunity and hemostasis, in mammalian biological systems. Negative regulation of signaling through immune receptor tyrosine-based activation motif (ITAM)- and hemITAM-bearing receptors mediated by Syk-family protein tyrosine kinases appears to be a major molecular mechanism of the down-regulatory effect of TULA-family proteins, which possess protein tyrosine phosphatase (PTP) activity. However, these proteins are likely to carry out some PTP-independent functions as well. Whereas the effects of TULA-family proteins overlap, their characteristics and their individual contributions to cellular regulation also demonstrate clearly distinct features. Protein structure, enzymatic activity, molecular mechanisms of regulation, and biological functions of TULA-family proteins are discussed in this review. In particular, the usefulness of the comparative analysis of TULA proteins in various metazoan taxa, for identifying potential roles of TULA-family proteins outside of their functions already established in mammalian systems, is examined.


Phthiraptera , Animals , Female , Mice , Phthiraptera/metabolism , Chickens/metabolism , Protein-Tyrosine Kinases/metabolism , Protein Tyrosine Phosphatases/metabolism , Signal Transduction , Syk Kinase/metabolism , Phosphorylation/physiology , Mammals/metabolism
18.
J Biol Chem ; 299(7): 104865, 2023 07.
Article En | MEDLINE | ID: mdl-37268160

Spleen tyrosine kinase (Syk) is expressed in a variety of hemopoietic cells. Upon phosphorylation of the platelet immunoreceptor-based activation motif of the glycoprotein VI (GPVI)/Fc receptor gamma chain collagen receptor, both the tyrosine phosphorylation and activity of Syk are increased leading to downstream signaling events. Although it has been established that the activity of Syk is regulated by tyrosine phosphorylation, the specific roles of individual phosphorylation sites remain to be elucidated. We observed that Syk Y346 in mouse platelets was still phosphorylated when GPVI-induced Syk activity was inhibited. We then generated Syk Y346F mice and analyzed the effect this mutation exerts on platelet responses. Syk Y346F mice bred normally, and their blood cell count was unaltered. We did observe potentiation of GPVI-induced platelet aggregation and ATP secretion as well as increased phosphorylation of other tyrosines on Syk in the Syk Y346F mouse platelets when compared to WT littermates. This phenotype was specific for GPVI-dependent activation, since it was not seen when AYPGKF, a PAR4 agonist, or 2-MeSADP, a purinergic receptor agonist, was used to activate platelets. Despite a clear effect of Syk Y346F on GPVI-mediated signaling and cellular responses, there was no effect of this mutation on hemostasis as measured by tail-bleeding times, although the time to thrombus formation determined using the ferric chloride injury model was reduced. Thus, our results indicate a significant effect of Syk Y346F on platelet activation and responses in vitro and reveal its complex nature manifesting itself by the diversified translation of platelet activation into physiological responses.


Blood Platelets , Platelet Aggregation , Syk Kinase , Animals , Mice , Phosphorylation , Platelet Activation , Platelet Membrane Glycoproteins/genetics , Platelet Membrane Glycoproteins/metabolism , Syk Kinase/genetics , Syk Kinase/metabolism , Tyrosine
19.
Int J Mol Sci ; 24(9)2023 Apr 24.
Article En | MEDLINE | ID: mdl-37175486

Bruton's tyrosine kinase (Btk) and spleen tyrosine kinase (Syk) are major signaling proteins in human platelets that are implicated in atherothrombosis and thrombo-inflammation, but the mechanisms controlling their activities are not well understood. Previously, we showed that Syk becomes phosphorylated at S297 in glycoprotein VI (GPVI)-stimulated human platelets, which limits Syk activation. Here, we tested the hypothesis that protein kinases C (PKC) and A (PKA) and protein phosphatase 2A (PP2A) jointly regulate GPVI-induced Btk activation in platelets. The GPVI agonist convulxin caused rapid, transient Btk phosphorylation at S180 (pS180↑), Y223 and Y551, while direct PKC activation strongly increased Btk pS180 and pY551. This increase in Btk pY551 was also Src family kinase (SFK)-dependent, but surprisingly Syk-independent, pointing to an alternative mechanism of Btk phosphorylation and activation. PKC inhibition abolished convulxin-stimulated Btk pS180 and Syk pS297, but markedly increased the tyrosine phosphorylation of Syk, Btk and effector phospholipase Cγ2 (PLCγ2). PKA activation increased convulxin-induced Btk activation at Y551 but strongly suppressed Btk pS180 and Syk pS297. PP2A inhibition by okadaic acid only increased Syk pS297. Both platelet aggregation and PLCγ2 phosphorylation with convulxin stimulation were Btk-dependent, as shown by the selective Btk inhibitor acalabrutinib. Together, these results revealed in GPVI-stimulated platelets a transient Syk, Btk and PLCγ2 phosphorylation at multiple sites, which are differentially regulated by PKC, PKA or PP2A. Our work thereby demonstrated the GPVI-Syk-Btk signalosome as a tightly controlled protein kinase network, in agreement with its role in atherothrombosis.


Protein Kinase C , Protein Phosphatase 2 , Humans , Agammaglobulinaemia Tyrosine Kinase/metabolism , Blood Platelets/metabolism , Phospholipase C gamma/metabolism , Phosphorylation , Platelet Membrane Glycoproteins/metabolism , Protein Kinase C/metabolism , Protein Phosphatase 2/metabolism , Syk Kinase/metabolism
20.
Part Fibre Toxicol ; 20(1): 12, 2023 04 19.
Article En | MEDLINE | ID: mdl-37076877

BACKGROUND: Synthetic amorphous silica nanoparticles (SAS-NPs) are widely employed in pharmaceutics, cosmetics, food and concretes. Workers and the general population are exposed daily via diverse routes of exposure. SAS-NPs are generally recognized as safe (GRAS) by the Food and Drug Administration, but because of their nanoscale size and extensive uses, a better assessment of their immunotoxicity is required. In the presence of immune "danger signals", dendritic cells (DCs) undergo a maturation process resulting in their migration to regional lymph nodes where they activate naive T-cells. We have previously shown that fumed silica pyrogenic SAS-NPs promote the two first steps of the adaptative immune response by triggering DC maturation and T-lymphocyte response, suggesting that SAS-NPs could behave as immune "danger signals". The present work aims to identify the mechanism and the signalling pathways involved in DC phenotype modifications provoked by pyrogenic SAS-NPs. As a pivotal intracellular signalling molecule whose phosphorylation is associated with DC maturation, we hypothesized that Spleen tyrosine kinase (Syk) may play a central role in SAS-NPs-induced DC response. RESULTS: In human monocyte-derived dendritic cells (moDCs) exposed to SAS-NPs, Syk inhibition prevented the induction of CD83 and CD86 marker expression. A significant decrease in T-cell proliferation and IFN-γ, IL-17F and IL-9 production was found in an allogeneic moDC:T-cell co-culture model. These results suggested that the activation of Syk was necessary for optimal co-stimulation of T-cells. Moreover, Syk phosphorylation, observed 30 min after SAS-NP exposure, occurred upstream of the c-Jun N-terminal kinase (JNK) Mitogen-activated protein kinases (MAPK) and was elicited by the Src family of protein tyrosine kinases. Our results also showed for the first time that SAS-NPs provoked aggregation of lipid rafts in moDCs and that MßCD-mediated raft destabilisation altered Syk activation. CONCLUSIONS: We showed that SAS-NPs could act as an immune danger signal in DCs through a Syk-dependent pathway. Our findings revealed an original mechanism whereby the interaction of SAS-NPs with DC membranes promoted aggregation of lipid rafts, leading to a Src kinase-initiated activation loop triggering Syk activation and functional DC maturation.


Nanoparticles , Silicon Dioxide , Humans , Silicon Dioxide/toxicity , Silicon Dioxide/metabolism , Protein-Tyrosine Kinases/metabolism , Phosphorylation , JNK Mitogen-Activated Protein Kinases/metabolism , Nanoparticles/toxicity , Dendritic Cells , Syk Kinase/metabolism
...